Decavanadate displaces inositol 1,4,5-trisphosphate (IP3) from its receptor and inhibits IP3 induced Ca2+ release in permeabilized pancreatic acinar cells.

نویسندگان

  • K J Föhr
  • Y Wahl
  • R Engling
  • T P Kemmer
  • M Gratzl
چکیده

Inositol 1,4,5-trisphosphate (IP3) induced Ca2+ release in digitonin permeabilized rat pancreatic acinar cells is specifically inhibited by decavanadate. The Ca2+ release induced with 0.18 microM IP3 is half maximally inhibited with approximately 5 microM decavanadate. Complete inhibition is achieved with around 20 microM decavanadate. Removal of decavanadate from the permeabilized cells fully restores sensitivity towards IP3, indicating the reversibility of the inhibition. Oligovanadate, which inhibits ATP dependent Ca2+ uptake into intracellular stores, does not influence IP3 induced Ca2+ release. In order to reveal the mechanism underlying the effects of the different vanadate species, binding of IP3 to the same cellular preparations was investigated. We found that binding of IP3 to a high affinity receptor site (Kd approx. 1.2 nM) could be abolished by decavanadate but not by oligovanadate. With 0.5 microM decavanadate, IP3 binding was half maximally inhibited. A similar potency of decavanadate was also found with adrenal cortex microsomes which bind IP3 with the same affinity (Kd approx. 1.4 nM) as permeabilized pancreatic acinar cells. Labelled IP3 was displaced from these subcellular membranes with similar kinetics by unlabelled IP3 and decavanadate. The data suggest that the inhibitory action of decavanadate on IP3 induced Ca2+ release is a consequence of its effect on binding of IP3 to its receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the inositol 1,4,5-trisphosphate-induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate.

The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the a...

متن کامل

Cellular geography of IP3 receptors, STIM and Orai: a lesson from secretory epithelial cells.

Pancreatic acinar cells exhibit a remarkable polarization of Ca2+ release and Ca2+ influx mechanisms. In the present brief review, we discuss the localization of channels responsible for Ca2+ release [mainly IP3 (inositol 1,4,5-trisphosphate) receptors] and proteins responsible for SOCE (store-operated Ca2+ entry). We also place these Ca2+-transporting mechanisms on the map of cellular organell...

متن کامل

Sustained Ca2+ signaling in mouse lacrimal acinar cells due to photolysis of "caged" glycerophosphoryl-myo-inositol 4,5-bisphosphate.

In saponin-permeabilized mouse lacrimal acinar cells, glycerophosphoryl-myo-inositol 4,5-bisphosphate (GPIP2) activated the release of sequestered Ca2+ to the same extent as inositol 1,4,5-trisphosphate ((1,4,5)IP3) but with a potency about 1/10 that of (1,4,5)IP3. In lacrimal gland homogenates, [3H]GPIP2 was metabolized to two compounds which upon anion exchange high performance liquid chromat...

متن کامل

GTP and Ca2+ modulate the inositol 1,4,5-trisphosphate-dependent Ca2+ release in streptolysin O-permeabilized bovine adrenal chromaffin cells.

The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Gua...

متن کامل

Isomers of inositol trisphosphate in exocrine pancreas.

In rat pancreatic acinar cells, the Ca2+-mobilizing receptor-agonist, caerulein, at both maximal and submaximal concentrations, stimulated a rapid, transient, increase in [3H]inositol 1,4,5-trisphosphate [(1,4,5)IP3], followed by a slower, sustained, increase in [3H]inositol 1,3,4-trisphosphate [(1,3,4)IP3]. Neither activation of protein kinase C by phorbol dibutyrate nor prevention of the caer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell calcium

دوره 12 10  شماره 

صفحات  -

تاریخ انتشار 1991